
Митрофанов Сергей Владимирович, канд. техн. наук, доц. кафедры электро- и теплоэнергетики, Оренбургский государственный университет, Оренбург, Россия; mitser2002@mail.ru. Байкасенов Дамир Куандыкович, аспирант кафедры автоматизированного электропривода, электромеханики и электротехники, Оренбургский государственный университет, Оренбург; baykasenov@bk.ru. Sergey V. Mitrofanov, Cand. Sci. (Eng.), Ass. Prof. of the Department of Electricity and Heat Power Engineering, Orenburg State University, Orenburg, Russia; mitser2002@mail.ru. Damir K. Baykasenov, Postgraduate Student of the Department of Automatic Electric Drives, Electromechanics and Electrical Engineering, Orenburg State University, Orenburg, Russia; baykasenov@bk.ru. Преобразование солнечной энергии в электрическую является одним из решений для повышения надежности электроснабжения удаленных потребителей. Объем генерируемой электроэнергии фото- электрическими станциями зависит от их географического месторасположения, температуры окружающей среды, погодных условий, материала фотоэлектрических модулей, а также от угла падения солнечного потока и ориентации фотоэлектрических модулей. В статье рассмотрены способы повышения надежности электроснабжения потребителей электроэнергии фотоэлектрических станций, проанализированы существующие принципы и механизмы, определяющие оптимальное положение фотоэлектрических модулей. Обосновано, что наилучшим способом повышения энергоэффективности работы фотоэлектрических станций является применение автоматизированных систем слежения за Солнцем. Проанализирована научно-техническая литература по проектированию, эксплуатации и моделированию следящих систем фотоэлектрических станций с активным управлением. Рассмотрены существующие классификации систем слежения за Солнцем. Определены основные направления совершенствования и развития следящих систем для фотоэлектрических станций, которые позволят исследователям решать актуальные задачи возобновляемой энергетики. The conversion of solar energy into electrical energy can improve the reliability of power supply to remote consumers. The amount of electricity generated by photovoltaic power stations depends on their geographical location, ambient temperature, weather conditions, the material of photovoltaic modules, the angle of incidence of the solar flux, and the orientation of photovoltaic modules. This article discusses ways to improve the reliability of power supply to consumers using photovoltaic power stations and analyzes the principles and mechanisms that determine the optimal position of photovoltaic modules. It is shown that the best way to increase the energy efficiency of photovoltaic power plants is the use of automated solar tracking systems. The scientific and technical literature on the design, operation, and modeling of tracking systems with active control of photovoltaic power stations is analyzed. The existing classifications of solar tracking systems are considered. The main directions for the improvement and development of tracking systems for photovoltaic plants are determined, which will allow researchers to improve the generation of renewable energy.
фотоэлектрические станции, solar tracking systems, системы слежения за Солнцем, УДК 621.311.243, обзор солнечных трекеров, solar trackers review, photovoltaic power plants, solar trackers, возобновляемые источники энергии, renewable energy sources, солнечные трекеры
фотоэлектрические станции, solar tracking systems, системы слежения за Солнцем, УДК 621.311.243, обзор солнечных трекеров, solar trackers review, photovoltaic power plants, solar trackers, возобновляемые источники энергии, renewable energy sources, солнечные трекеры
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
