
В.В. Карачик Южно-Уральский государственный университет, г. Челябинск, Российская Федерация E-mail: karachik@susu.ru. V.V. Karachik South Ural State University, Chelyabinsk, Russian Federation E-mail: karachik@susu.ru Аналогично известному элементарному решению уравнения Лапласа вводится элементарное решение бигармонического уравнения. Находится связь этого элементарного решения с элементарным решением уравнения Лапласа. В зависимости от размерности пространства, в котором исследуется краевая задача, через введенное элементарное решение бигармонического уравнения в явном виде определяется некоторая симметричная функция двух переменных. Затем доказывается, что эта функция обладает свойствами функции Грина задачи Дирихле для бигармонического уравнения в единичном шаре. Отдельно исследуются два случая, когда размерность пространства два и когда размерность пространства больше двух. Аналогично функции Грина задачи Дирихле для уравнения Пуассона в шаре находится разложение функции Грина задачи Дирихле для бигармонического уравнения в шаре по полной, ортогональной на единичной сфере системе однородных гармонических многочленов. Это сделано в случае размерности пространства больше четырех. С помощью полученного разложения функции Грина вычисляется интеграл по шару с ядром из функции Грина от однородного гармонического многочлена, умноженного на положительную степень нормы независимой переменной. Полученные результаты согласуются с результатами, известными ранее в этой области. Elementary solution of a biharmonic equation is introduced in analogy to the known elementary solution of the Laplace equation. Relation of this elementary solution with the elementary solution of the Laplace equation gets determined. Depending on dimensionality of space in which a boundary problem is being under research, a symmetric function of two variables gets determined in explicit form through the introduced elementary solution. Then it gets proved that this function possesses properties of Green’s function of the Dirichlet problem for biharmonic equation in a unit ball. Two cases when space dimensionality equals two and when space dimensionality is more than two are being researched separately. Analogous to Green’s function of the Dirichlet problem for Poisson’s equation in a ball, there is expansion of Green’s function of the Dirichlet problem for biharmonic equation in a ball in the full, or thogonal-at-the-unit-sphere, system of homogenous harmonic polynominals. This is to be done in case when space dimensionality is more than four. Using the obtained expansion of Green’s function, integral gets calculated by a ball with the kernel out of Green’s function from a homogenous harmonic polynominal multiplied by the positive degree of norm of the independent variable. The obtained results get complied with the previously known results in this sphere.
бигармоническое уравнение, biharmonic equation, функция Грина, УДК 517.956.223, УДК 519.635.1, Green’s function, задача Дирихле, Dirichlet problem
бигармоническое уравнение, biharmonic equation, функция Грина, УДК 517.956.223, УДК 519.635.1, Green’s function, задача Дирихле, Dirichlet problem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
