
Исследуется оптимальное управление решениями задачи Дирихле– Шоуолтера–Сидорова для системы уравнений движения жидкости Кельвина–Фойгта нулевого порядка, которую принято называть системой уравнений Осколкова. Рассмотрен случай вырожденного уравнения. Доказано существование глобального по времени единственного слабого обобщенного решения исследуемой модели в пространстве соленоидальных функций. Проведена редукция рассматриваемой модели к задаче Шоуолтера–Сидорова для абстрактного полулинейного уравнения соболевского типа. Доказана теорема существования оптимального управления слабыми обобщенными решениями задачи Шоуолтера– Сидорова для абстрактного полулинейного уравнения соболевского типа. Полученные абстрактные результаты применены к модели Осколкова. In this article we study the optimal control of solutions of the Dirichlet–Showalter–Sidorov problem for the system of equations of Kelvin–Voight zero order fluid motion, which is called a system of Oskolkov equations. The case of the degenerate equation is considered. Existence of global in time weak generalized solution of the model in the space of solenoidal functions is proved. The existence of optimal control of weak generalized solutions of Showalter–Sidorov problem for abstract semilinear Sobolev type equation is shown. The obtained abstract results are applied to the Oskolkov model. Манакова Наталья Александровна – кандидат физико-математических наук, доцент, кафедра уравнений математической физики, Южно-Уральский государственный университет. E-mail: manakovana@susu.ac.ru. Manakova Natalia Aleksandrovna is Cand. Sc. (Physics and Mathematics), Associate Professor, Department of Equation of Mathematical Physics, South Ural State University, Chelyabinsk, Russian Federation. E-mail: manakovana@susu.ac.ru
система уравнений Осколкова, the system of Oskolkov equations, УДК 517.977.1/.5, the optimal control problem, ГРНТИ 27.35, 532.5 [УДК 517.958], уравнения соболевского типа, Sobolev type equations, задача оптимального управления
система уравнений Осколкова, the system of Oskolkov equations, УДК 517.977.1/.5, the optimal control problem, ГРНТИ 27.35, 532.5 [УДК 517.958], уравнения соболевского типа, Sobolev type equations, задача оптимального управления
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
