Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ E-resource repositor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mašīnmācīšanās pielietojums programmatūras produktu automatizētās regresijas testēšanas paātrināšanai

Authors: Cipiševa, Svetlana;

Mašīnmācīšanās pielietojums programmatūras produktu automatizētās regresijas testēšanas paātrināšanai

Abstract

Regresijas testēšana prasa ievērojamus laika un resursu ieguldījumus. Pētījums parāda, kā mašīnmācīšanās var palīdzēt ievērojami paātrināt regresijas testēšanu, izmantojot testpiemēru prioritizāciju, lai atklātu kļūdas pēc iespējas agrāk. Darbā ir izstrādāti seši mašīnmācīšanās modeļi, pamatojoties uz trim algoritmiem: punktveida “Gradient Boosting”, pāru veida “LambdaMART” un saraksta veida “NeuralNDCG”. “Gradient Boosting” demonstrē augstāko precizitāti, kas ir tikai 1- 4% zemāka, salīdzinot ar ideāli sakārtotu datu kopu. Turklāt “Gradient Boosting” prasa visīsāko apmācības laiku, padarot to piemērotu ikdienas apmācībai nepārtrauktās integrēšanās vidē. Modeļi tika izstrādāti un pārbaudīti, balstoties uz projektiem, kas izmanto programmēšanas valodu “Java” un kas ietvēra 23 miljonus testkomplektu izpildes. Tas liecina par modeļu augsto uzticamību. Viena no darba unikālajām īpašībām ir tā, ka divas no izmantotajām iezīmēm tika iegūtas, pamatojoties uz pirmkoda izmaiņām. Tas kļuva iespējams, pateicoties “UniXCoder” lielā valodas modeļa izmantošanai, kas ir daļa no “CodeBERT” modeļa. Tā kā neviens no analizētajiem mūsdienu mašīnmācīšanās testēšanas rīkiem nepiedāvā šādu iespēju, tad darbs paver iespēju veidot jaunas inovatīvas metodes un rīkus testpiemēru rindošanai.

Regression testing requires a significant investment of time and resources. The study shows how machine learning can help to significantly speed up regression testing by using test case prioritisation to detect errors as early as possible. The work included development of six machine learning models based on three algorithms: pointwise Gradient Boosting, pairwise LambdaMART and listwise NeuralNDCG. Gradient Boosting demonstrated the highest accuracy, only 1-4% lower on key metrics compared to a perfectly ordered dataset, and required the shortest training time, making it suitable for daily retraining in a continuous integration environment. The models were developed and tested on projects using the Java programming language, which involved 23 million test suite executions. This demonstrates the high reliability of the models. One of the unique features of the work is that two of the features used were derived based on source code changes. This was made possible by using the UniXCoder large language model, which is part of the CodeBERT model family. As none of the modern machine learning testing tools analysed offer this possibility, the work opens the possibility to develop new innovative methods and tools for queuing test examples.

Related Organizations
Keywords

Rindošanas mašīnmācīšanās, Datorzinātne, Gradient Boosting, Testpiemēra prioritāšu noteikšana, UniXCoder, LambdaMART

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities