Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dagstuhl Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Universal Uniform Approximation Theorem for Neural Networks.

Authors: Bournez, Olivier; Cohen, Johanne; Wurm, Adrian;

A Universal Uniform Approximation Theorem for Neural Networks.

Abstract

We show the existence of a fixed recurrent network capable of approximating any computable function with arbitrary precision, provided that an encoding of the function is given in the initial input. While uniform approximation over a compact domain is a well-known property of neural networks, we go further by proving that our network ensures effective uniform approximation - simultaneously ensuring: - Uniform approximation in the sup-norm sense, guaranteeing precision across the compact domain {[0,1]^d}; - Uniformity in the sense of computability theory (also referred to as effectivity or universality), meaning the same network works for all computable functions. Our result is obtained constructively, using original arguments. Moreover, our construction bridges computation theory with neural network approximation, providing new insights into the fundamental connections between circuit complexity and function representation. Furthermore, this connection extends beyond computability to complexity theory. The obtained network is efficient: if a function is computable or approximable in polynomial time in the Turing machine model, then the network requires only a polynomial number of recurrences or iterations to achieve the same level of approximation, and conversely. Moreover, the recurrent network can be assumed to be very narrow, strengthening the link our results and existing models of very deep learning, where uniform approximation properties have already been established.

Country
Germany
Keywords

Models of computation, Complexity theory, Formal neural networks, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average