
We show the existence of a fixed recurrent network capable of approximating any computable function with arbitrary precision, provided that an encoding of the function is given in the initial input. While uniform approximation over a compact domain is a well-known property of neural networks, we go further by proving that our network ensures effective uniform approximation - simultaneously ensuring: - Uniform approximation in the sup-norm sense, guaranteeing precision across the compact domain {[0,1]^d}; - Uniformity in the sense of computability theory (also referred to as effectivity or universality), meaning the same network works for all computable functions. Our result is obtained constructively, using original arguments. Moreover, our construction bridges computation theory with neural network approximation, providing new insights into the fundamental connections between circuit complexity and function representation. Furthermore, this connection extends beyond computability to complexity theory. The obtained network is efficient: if a function is computable or approximable in polynomial time in the Turing machine model, then the network requires only a polynomial number of recurrences or iterations to achieve the same level of approximation, and conversely. Moreover, the recurrent network can be assumed to be very narrow, strengthening the link our results and existing models of very deep learning, where uniform approximation properties have already been established.
Models of computation, Complexity theory, Formal neural networks, ddc: ddc:004
Models of computation, Complexity theory, Formal neural networks, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
