
El presente proyecto de tesis aborda el "Desarrollo de un Módulo Educativo para la Clasificación de Objetos Utilizando un Brazo Robótico y Visión Artificial”. Se centra en el desarrollo de un sistema de control para un brazo robótico capaz de clasificar objetos geométricos utilizando visión artificial. La metodología se enfoca en la integración de una Raspberry Pi programada en Python a través de la función Thonny, conectada a periféricos mediante una interfaz HMI. Se destaca el uso de Tkinter para la interfaz gráfica del menú y el control del brazo robótico desde distintos ejes de movimientos. Se diseñaron clases de rutinas independientes para abordar aspectos como la cinemática directa, cinemática inversa y visión artificial. Los resultados muestran una precisión en la posición del efector final del (90 % comparado con los resultados del software de simulación. Mientras que el reconocimiento y clasificación de objetos considerando color y forma tuvo una efectividad del 90 % y clasificación de objetos 95 %. Finalmente, se implementaron tres prácticas de laboratorio en donde se pudieron relacionar los principios matemáticos de la cinemática del robot utilizando el modelo propuesto.
This thesis project addresses the "Development of an Educational Module for the Classification of Objects Using a Robotic Arm and Artificial Vision". It focuses on the development of a control system for a robotic arm capable of classifying geometric objects using artificial vision. The methodology focuses on the integration of a Raspberry Pi programmed in Python through the Thonny function, connected to peripherals through an HMI interface. The use of Tkinter stands out for the graphical interface of the menu and the control of the robotic arm from different axes of movement. Separate routine classes were designed to address aspects such as forward kinematics, inverse kinematics, and computer vision. The results show an accuracy in the position of the end effector of (90 % compared to the results of the simulation software. While the recognition and classification of objects considering color and shape had an effectiveness of 90 % and classification of objects 95%.
BRAZO ROBÓTICO, CINEMÁTICA, CLASIFICACIÓN, VISIÓN ARTIFICIAL
BRAZO ROBÓTICO, CINEMÁTICA, CLASIFICACIÓN, VISIÓN ARTIFICIAL
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
