Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated detection of anomalies in sewer closed circuit television videos using proportional data modeling

Authors: Moradi, Saeed; Zayed, Tarek; Hawari, Alaa H.;

Automated detection of anomalies in sewer closed circuit television videos using proportional data modeling

Abstract

Sewer pipeline condition information is usually collected using closed circuit television (CCTV). Moreover, in order to evaluate the condition of pipeline, data should be processed by a certified operator, which is time consuming, costly, and error prone due to operator's skillfulness or fatigue. Automating the detection of anomalies can reduce time and cost of inspection while ensuring the accuracy and quality of assessment. However, considering various types of defects in sewer pipelines and numerous patterns of each, it seems to be difficult to detect the defects using computer vision techniques. This paper presents an efficient anomaly detection algorithm to support automated detection of sewer defects from data obtained from CCTV inspection videos. In this model Hidden Markov Model (HMM) for proportional data modeling is employed theoretically and its performance of anomaly detection in an example of sewer CCTV videos has been assessed. The algorithm consists of modeling conditions considered as normal and detecting outliers to this model. Scopus

Related Organizations
Keywords

Pipelines, Sewer pipelines, Information analysis, Markov processes, Cctv inspections, Anomaly-detection algorithms, Anomaly detection, Sewers, Automated detection, Computer vision techniques, Timing circuits, Computer vision, Defects, Hidden Markov models, Closed circuit television, Proportional datum, Signal detection

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green