Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DLR publication serv...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motion Parameter Estimation of Doppler-Ambiguous Moving Targets in SAR-GMTI

Authors: Gabele, Martina; Sikaneta, Ishuwa;

Motion Parameter Estimation of Doppler-Ambiguous Moving Targets in SAR-GMTI

Abstract

In an along-track interferometric SAR system, the discrete sampling of moving target signals can give rise to two types of ambiguity: Doppler ambiguity, and interferometric angle ambiguity. These ambiguities lead to ambiguities in target velocity estimation. Range cell migration of moving targets is unambiguous in target velocity. Hence, it can be used for resolving the ambiguities in target velocity estimation mentioned above. The wave number domain algorithm as well as the chirp scaling algorithm is adapted to moving target signals. In order to focus moving target signals with arbitrary velocities both approaches are extended to arbitrary Doppler frequency ands. Moving target signals distributed over two neighbouring PRF bands are especially difficult to detect and analyze because the sgnal splits into two parts. It is shown that the two parts appear at different positions in the SAR image and have different ATI phases. They show up as two weaker targets since the energy is split between them. It is demonstrated how the two targets can be identified as possibly the same target, and how they can be properly focussed by adaptation of the SAR focussing algorithms.

Related Organizations
Keywords

wavenumber domain algorithm, chirp scaling algorithm, range cell migration correction, Moving target motion parameter estimation, Doppler-ambiguities, ATI, Satelliten-SAR-Systeme, Institut für Hochfrequenztechnik und Radarsysteme

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green