Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Functional Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Functional Ecology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jyväskylä University Digital Archive
Article . 2025 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
Data sources: Apollo
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Research.fi
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Marine‐derived nutrients shape the functional composition of High Arctic plant communities

Authors: Ruben E. Roos; Julia Kemppinen; Pekka Niittynen; Vigdis Vandvik; Inge Althuizen; Pernille Bronken Eidesen; Brian J. Enquist; +23 Authors

Marine‐derived nutrients shape the functional composition of High Arctic plant communities

Abstract

Abstract Low temperatures and nutrient limitation have shaped Arctic plant communities, which are now affected by biome‐wise changes in both climate and nutrient cycling. Rising temperatures are favouring taller plant species with more resource‐acquisitive traits across the Arctic tundra. Simultaneously, declines in seabird populations may reduce subsidies of marine‐derived nutrients to terrestrial ecosystems, potentially favouring more resource‐conservative plant traits. It is crucial to understand the consequences of these concurrent changes in climate and marine‐derived nutrient inputs from seabirds for the functional composition and roles of Arctic plant communities. We use a 'space‐for‐time approach' to compare the functional composition of vascular plant communities across two elevational gradients in High Arctic Svalbard, one where climate is the major environmental driver and one influenced by nutrient input from a seabird colony. We assess changes in 13 traits related to plant size, leaf economics and nutrient cycling along the two gradients, and we also explore the relative contributions of species turnover and intraspecific variation to total trait variation across and between the gradients. Elevation per se had little impact on the plant functional composition. Instead, plants at the top of the seabird nutrient gradient, closest to the nesting sites, were taller and had resource‐acquisitive trait values, such as larger and thicker leaves and higher leaf nutrient contents. Enriched soil δ15N‰ signatures at these sites correlated with resource‐acquisitive values of leaf area, specific leaf area, leaf dry matter content, leaf phosphorous content and with enriched leaf δ15N‰ signatures. This variation in leaf economic traits and isotopes was largely driven by intraspecific variation at the nutrient gradient, whereas species turnover dominated at the reference gradient. Our results are consistent with marine‐derived nutrient subsidies from seabirds being a major driver of functional trait variation in Arctic vegetation. Ongoing declines in seabird populations may therefore affect terrestrial primary producer communities in the Arctic and beyond, with potentially important but unknown implications for biodiversity, consumer and decomposer communities, and ecosystem processes. Read the free Plain Language Summary for this article on the Journal blog.

Keywords

kasviekologia, arktinen alue, plant functional traits, Species turnover, Nutrient enrichment, Bj & oslash;rndalen, species turnover, Intraspecific trait variation, kasvillisuus, ravinteet, merilinnut, Seabirds, Svalbard, nutrient enrichment, Ecology, evolutionary biology, intraspecific trait variation, Plant functional traits, Bjørndalen, seabirds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid