
?? ???????????????????????????? ????????????????-?????????????????????? ???????????? ?????????????????????? ?????????????????? (DFT) ?? ???????????????????? ?????????????????????? ?????????????????????????? ???????????????? ???????????????????????? ??????????????????????????????? ?? ???????????????????? ???????????????????????????? ???? ???????????????????????????? ?? ???????????????????????? ?? ?????????????????? ????????????????????. ?????????????????????? ?????????????????????? ???????????????????????? ?????????????? ?????????????????? ?? ?????????????? ?????????????????? ?????????????????? ???? ?????????????????? ???????????????? ??????????????????????????. ????????????????, ?????? ???????????????? ?????????????????????? Pt37Co18, ?????????????? ?????????? ?????????????? ???????????????? ???? ???????????? ??????????????, ?????????? ???????????????????? ?????????????? ?????????????????? ?????????????????????????? ?? ???????????????????? ??????????????????, ?????? ?????????????????? ?????????????? ?????????? ?? ???????????????????????????? ?????????????????? ?????????????? ???????????????????????? ?? ??????????????????. ???????????????????? ???????????????????? ???????????? ?????????????????????? ?? ???????????????????? ???????????????????????????????????? ?? ???????????????????????????? ??????????????, ?????? ?????????????????????????????? ?? ?????????????????????????????? ?????????????????????????? ???????????? ?????????????????????? ?????????????????? ?? ???????????????????????????? ???????????? ?????????????????????? ?????????????? ?? ?????????????????? ?????????????????????? ???????????????? ?????????????????????????????????? ???? ???????????? ?????????????? ?????? ???? ?????????????????????????? ?? ???????????????????????????? ???????????????? ???? ?????????????? ???????????????????????????????????? ?????????????????? ??????????????????.
???? ???????????? ???????????????????????? ????????????????-???????????????? ???????????? ?????????????????????? ?????????????? (DFT) ?? ?????????????????????? ???????????????????? ???????????????????????? ?????????????? ???????????????????????? ??????????????????????????????? ???? ?????????????????????? ???????????????????????????? ???? ?????????????????? ?? ???????????????????????? ???? ???????????????? ????????????. ?????????????????????? ???????????????????? ???????????????????????? ?????????????? ?????????????????? ???? ?????????????? ?????????????????? ?????????????????? ?????? ?????????????????? ???????????????? ??????????????????????????. ????????????????, ???? ???????????????? ?????????????????????? Pt37Co18, ???????? ?????? ???????????????? ???????????????? ?? ???????????? ??????????????, ?????? ???????????????? ?????????????? ?????????????????? ?????????????????????????? ???? ?????????????????? ??????????, ???? ?????????????????? ?????????????? ???????????????? ?????? ?????????????????????? ?????????????????? ???????????? ???????????????????????? ???? ??????????????????. ???????????????? ???????????????????? ?????????? ???????????????????????? ?? ???????????????? ???????????????????????????????????? ???? ???????????????????????? ????????????, ???? ???????????????? ?????? ?????????????????????????????? ???????????????????????? ???????????? ?????????????????????? ?????????????? ???? ???????????????????????? ???????????? ?????????????????? ???????????? ?? ?????????????????? ???????????????????? ???????????????? ?????????????????????????????????? ???? ???????????? ?????????????? ?????? ???? ???????????????????????? ?? ???????????????????????? ???????????????? ???? ?????????????? ?????????????????????????????????????? ???????????????? ??????????????.
Based on the quantum-chemical method of the density functional theory (DFT) within the cluster approximation, binary platinum???cobalt nanoclusters are simulated, and parameters of their interaction with molecular and atomic oxygen are calculated. As shown, a binary Pt37Co18 nanocluster constructed of platinum-atom outer shell has the lowest adsorption heat of molecular and atomic oxygen. This fact confirms conclusion concerning the catalytic stability of such a nanocluster to oxidation. The results obtained are in a good agreement with known experimental and theoretical data, indicating the perspectives of the density functional theory method for theoretical search of chemical composition and structure of effective binary nanocatalysts with platinum as cathode materials in low-temperature fuel cells.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
