
handle: 10281/455819
We propose an evolutionary optimization method for maximum likelihood and approximate maximum likelihood estimation of discrete latent variable models. The proposal is based on modified versions of the expectation–maximization (EM) and variational EM (VEM) algorithms, which are based on the genetic approach and allow us to accurately explore the parameter space, reducing the chance to be trapped into one of the multiple local maxima of the log-likelihood function. Their performance is examined through an extensive Monte Carlo simulation study where they are employed to estimate latent class, hidden Markov, and stochastic block models and compared with the standard EM and VEM algorithms. We observe a significant increase in the chance to reach global maximum of the target function and a high accuracy of the estimated parameters for each model. Applications focused on the analysis of cross-sectional, longitudinal, and network data are proposed to illustrate and compare the algorithms.
Expectation–maximization algorithm; Local maxima; Maximum-likelihood estimation; Variational expectation–maximization algorithm;
Expectation–maximization algorithm; Local maxima; Maximum-likelihood estimation; Variational expectation–maximization algorithm;
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
