
handle: 1959.8/155943
This paper is concerned with the problem of H∞ model reduction for Takagi–Sugeno (T–S) fuzzy stochastic systems. For a given mean-square stable T–S fuzzy stochastic system, our attention is focused on the construction of a reduced-order model, which not only approximates the original system well with an H∞ performance but also translates it into a linear lower dimensional system. Then, the model reduction is converted into a convex optimization problem by using a linearization procedure, and a projection approach is also presented, which casts the model reduction into a sequential minimization problem subject to linear matrix inequality constraints by employing the cone complementary linearization algorithm. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods. Refereed/Peer-reviewed
cone complementary linearization, Takagi–Sugeno (T–S) fuzzy systems, stochastic systems, H∞ model reduction
cone complementary linearization, Takagi–Sugeno (T–S) fuzzy systems, stochastic systems, H∞ model reduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
