
Мы намерены показать, каким образом теория вероятностей может считаться зависимой от логики, рассматривая теорию вероятности как ветвь логики в ее обобщенном понимании. Своего рода мета-аксиоматика позволяет определять вероятностные меры, которые являются классическими, параконсистентными, интуиционистскими или интуиционистскими и параконсистентными одновременно, просто параметризируя отношения следования. В частности, мы обсуждаем те теории вероятностей, которые выстроены на основе параконсистентной логики формального противоречия Ci и на основе логики свидетельства и истинности LETj. Логика Ci естественным образом формализует расширение понятия вероятности, способное выразить вероятностные рассуждения в условиях избытка информации (противоречий), в то время как LETj формализует расширение понятия вероятности, способное выразить вероятностный способ рассуждения в условиях недостатка информации (неполноты), и, таким образом, связана с понятием вероятности свидетельства. Будет показано, как интересное нестандартное байесовское обновление может быть определено в обоих случаях и далее расширено до трехзначной параконсистентной логики LFI1. Мы обсудим также то, как теория вероятностей, выстроенная на неклассических логиках, может быть непосредственно расширена за счет мер необходимости и возможности, и перечисляем некоторые открытые проблемы.
We intend to show how probability theory can be regarded as logic-dependent, viewing probability as a branch of logic in a generalized way. A kind of meta-axiomatics permits us to define probability measures that are either classical, paraconsistent, intuitionistic, or simultaneously intuitionistic and paraconsistent, just by parameterizing on consequence relations. In particular, we discuss theories of probability built upon the paraconsistent Logic of Formal Inconsistency Ci, and upon the paraconsistent and paracomplete Logic of Evidence and Truth LETj. The logic Ci naturally encodes an extension of the notion of probability able to express probabilistic reasoning under an excess of information (contradictions), while LETj encodes an extension of the notion of probability able to express probabilistic reasoning under lack of information (incompleteness), and is thus connected to the notion of probability of evidence. We show how interesting nonstandard Bayesian updating can be defined in both cases, and further generalized to the three-valued paraconsistent logic LFI1. We also discuss how probability theory over non-classical logics can be immediately extended to necessity and possibility measures, and list some open problems.
paraconsistency; probability measures; possibility and necessity measures; contradiction; consistency; logics of formal inconsistency, параконсистентность; вероятностные меры; меры необходимости и возможности; противоречие; консистентность; логика формальной неконсистентности
paraconsistency; probability measures; possibility and necessity measures; contradiction; consistency; logics of formal inconsistency, параконсистентность; вероятностные меры; меры необходимости и возможности; противоречие; консистентность; логика формальной неконсистентности
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
