Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Национальный агрегат...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Вероятностный прием преобразования кратных интегралов к интегралам меньшей размерности

Authors: Mosyagin, V. E.; Shvemler, N. A.;

Вероятностный прием преобразования кратных интегралов к интегралам меньшей размерности

Abstract

The article describes the dimensionality reduction technique of multiple integrals. The basic idea is that the representation a multiple integral as the expectation (Lebesgue integral) with respect to a suitable absolutely continuous probability distribution is possible. This representation allows us to use the probability concept of independence random variables in the integration theory. It also allows to apply the change-of-variables theorem in the Lebesgue integral that transforms an abstract integral to the integral over the real line.

В статье излагается прием понижения размерности кратных интегралов. Основная идея состоит в возможности представления кратного интеграла в виде математического ожидания (интеграла Лебега) относительно подходящего абсолютно непрерывного вероятностного распределения. Такое представление позволяет использовать в теории интегрирования вероятностное понятие независимости случайных величин. Это также дает возможность применить теорему о замене переменных в интеграле Лебега, которая преобразует абстрактный интеграл в интеграл по числовой прямой.

Keywords

classical probability distributions, кратные интегралы, замена переменных в интеграле Лебега, multiple integrals, change-of-variables theorem for Lebesgue integral, классические вероятностные распределения

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green