
Представлен обзор аналитических и численных методов для решения задачи идентификации математических моделей объектов и процессов по экспериментальным данным. Показано, что методы символьной регрессии, относящиеся к классу численных методов, при решении задачи идентификации позволяют искать не только значения параметров, но и структуры математических моделей. Приведены практические примеры использования одного из методов символьной регрессии, метода сетевого оператора, для решения прикладных задач идентификации, модели мобильного робота и модели химической реакции.
A review of analytical and numerical methods for solving the problem of mathematical models identification of objects and processes from experimental data is presented. It is shown, that in class of numerical methods symbolic regression allows solving the identification problem and find not only the values of the parameters, but also the structure of the models. Examples of ap-plication of one of the symbolic regression methods, a network operator method, for solving problems of identification of the mobile robot model and the chemical reaction model are given.
робототехника, символьная регрессия, модель химической реакции, идентификация, метод сетевого оператора
робототехника, символьная регрессия, модель химической реакции, идентификация, метод сетевого оператора
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
