
Пусть $P, Q$ -- идемпотенты в гильбертовом пространстве, $Q=Q^*$. 1) Если оператор $U=P-Q$ -- изометрия, то $U=U^*$ унитарен и $Q=P^{\perp}$. 2) Если еще $P=P^*$, то $$ P\wedge Q^{\perp}+ P^{\perp}\wedge Q\leq |P-Q| \leq P\vee Q- P\wedge Q \eqno{(*)} $$ с равенством во втором из неравенств тогда и только тогда, когда $PQ=QP$. С помощью $(*)$ установлено новое неравенство, характеризующее следы на $W^*$-алгебре. Получены приложения неравенства $(*)$ к идеальным $F$-псевдонормам на $W^*$-алгебре. Пусть $\varphi$ -- след на унитальной $C^*$-алгебре $\mathcal{A}$, $ \mathfrak{M}_{\varphi}$ -- идеал определения следа $\varphi$ и трипотенты $P, Q \in \mathcal{A}$. Если $P-Q\in \mathfrak{M}_{\varphi}$, то $\varphi (P-Q)\in \mathbb{R}$. Установлена перестановочность некоторых операторов.
идемпотент, трипотент, след, операторное неравенство, $C^*$-алгебра, проектор, ядерный оператор, $W^*$-алгебра, идеальная $F$-норма, линейный оператор, унитарный оператор, гильбертово пространство, перестановочность
идемпотент, трипотент, след, операторное неравенство, $C^*$-алгебра, проектор, ядерный оператор, $W^*$-алгебра, идеальная $F$-норма, линейный оператор, унитарный оператор, гильбертово пространство, перестановочность
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
