Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Национальный агрегат...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Динамика солитонов обобщенного уравнения NLS в неоднородной и нестационарной среде: эволюция и взаимодействие

Динамика солитонов обобщенного уравнения NLS в неоднородной и нестационарной среде: эволюция и взаимодействие

Abstract

Изучается устойчивость и динамика взаимодействия солитоноподобных решений обобщенного нелинейного уравнения Шредингера (GNLS), описывающего динамику огибающей модулированных нелинейных волн и импульсов (в том числе явления волнового коллапса и самофокусировки волновых пучков) в плазме (включая космическую), а также в нелинейных оптических системах с учетом неоднородности и нестационарности среды распространения. Уравнение GNLS используется и в других областях физики - таких, например, как теория сверхпроводимости и физика низких температур, гравитационные волны малой амплитуды на поверхности глубокой невязкой жидкости и др. Следует отметить, что 3-мерное уравнение 3-GNLS не является полностью интегрируемым, и его аналитические решения в общем случае не известны (за исключением, пожалуй, гладких решений типа уединенных волн). Однако, используя ранее развитые нами подходы для других уравнений (GKP и 3-DNLS) системы BK (Belashov-Karpman system), можно аналитически исследовать устойчивость возможных решений уравнения 3-GNLS, а динамику взаимодействия солитонов изучить численно. В работе и реализуется такой подход. Аналитически получены достаточные условия устойчивости 2-мерных и 3-мерных солитоноподобных решений и численно изучены случаи устойчивой и неустойчивой (с образованием бризеров) эволюции импульсов различной формы, а также взаимодействие 2- и 3-импульсных структур, приводящее к формированию устойчивых и неустойчивых решений. Полученные результаты могут быть полезны в многочисленных приложениях в физике ионосферной и магнитосферной плазмы и многих других областях физики.

100-107

Keywords

Физика, нелинейное уравнение Шредингера, взаимодействие, Математика, нестационарная среда, Космические исследования, неоднородная среда, солитоны, бризеры, эволюция

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green