Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brown and beige adipose tissues

phenotype and metabolic potential in mice and men
Authors: Chechi, Kanta; van Marken Lichtenbelt, Wouter; Richard, Denis;

Brown and beige adipose tissues

Abstract

With the recent rediscovery of brown fat in adult humans, our outlook on adipose tissue biology has undergone a paradigm shift. While we attempt to identify, recruit, and activate classic brown fat stores in humans, identification of beige fat has also raised the possibility of browning our white fat stores. Whether such transformation of human white fat depots can be achieved to enhance the whole body oxidative potential remains to be seen. Evidence to date, however, largely points toward a major oxidative role only for classic brown fat depots, at least in rodents. White fat stores seem to provide the main fuel for sustaining thermogenesis via lipolysis. Interestingly, molecular markers consistent with both classic brown and beige fat identity can be observed in human supraclavicular depot, thereby complicating the discussion on beige fat in humans. Here, we review the recent advances made in our understanding of brown and beige fat in humans and mice. We further provide an overview of their plausible physiological relevance to whole body energy metabolism.

Related Organizations
Keywords

sympathetic nervous system, FATTY-ACID OXIDATION, ENERGY-EXPENDITURE, brown fat, thermogenesis, ADULT HUMANS, NERVOUS-SYSTEM OUTFLOW, NONSHIVERING THERMOGENESIS, DIET-INDUCED THERMOGENESIS, UNCOUPLING PROTEIN-1 GENE, beige fat, GLUCOSE-HOMEOSTASIS, WHITE FAT, CENTRAL SENSORY CIRCUITS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities