
Abstract The objective of this study is to optimize electrochemical grinding (ECG) process responses simultaneously by an off-line multiresponse optimization methodology. The responses considered as objectives are side and bottom overcuts, surface finish, spindle load, total metal removal rate, and wheel wear. Materials of 304 Stainless Steel are ground by the ECG process. The process variables optimized for the above objectives include electrolyte type, wheel material, grit size, grit concentration, d.c. voltage, electrolyte flow rate, wheel speed, feed rate, and ripple effect. A simple weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of the weights, the set of non-dominated optimum solutions are obtained. It is shown in this paper that the multi-objective optimization methodology can be applied for an ECG operation, and that the optimal operating conditions for any given set of weights can be obtained depending upon the objectives.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
