
The theme of this chapter is a rather simple method that has proved very potent in the analysis of the expected performance of various randomized algorithms and data structures in computational geometry. The method can be described as “analyze a randomized algorithm as if it were running backwards in time, from output to input.” We apply this type of analysis to a variety of algorithms, old and new, and obtain solutions with optimal or near optimal expected performance for a plethora of problems in computational geometry, such as computing Delaunay triangulations of convex polygons, computing convex hulls of point sets in the plane or in higher dimensions, sorting, intersecting line segments, linear programming with a fixed number of variables, and others.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
