
Efficient application programming interface (API) recommendation is one of the most desired features of modern integrated development environments. A multitude of API recommendation approaches have been proposed. However, most of the currently available API recommenders do not support the effective integration of user feedback into the recommendation loop. In this paper, we present BRAID (Boosting RecommendAtion with Implicit FeeDback), a tool which leverages user feedback, and employs learning-to-rank and active learning techniques to boost recommendation performance. The implementation is based on the VSCode plugin architecture, which provides an integrated user interface. Essentially, BRAID is a general framework which can accommodate existing query-based API recommendation approaches as components. Comparative experiments with strong baselines demonstrate the efficacy of the tool. A video demonstrating the usage of BRAID can be found at https://youtu.be/naD0guvl8sE.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
