Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/abs...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/abs/cs/010702...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/3-540-...
Part of book or chapter of book . 2001 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2001
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fixed-Parameter Complexity of Semantics for Logic Programs

Authors: Lonc, Zbigniew; Truszczynski, Miroslaw;

Fixed-Parameter Complexity of Semantics for Logic Programs

Abstract

A decision problem is called parameterized if its input is a pair of strings. One of these strings is referred to as a parameter . The following problem is an example of a parameterized decision problem with k serving as a parameter: given a propositional logic program P and a nonnegative integer k , decide whether P has a stable model of size no more than k . Parameterized problems that are NP-complete often become solvable in polynomial time if the parameter is fixed. The problem to decide whether a program P has a stable model of size no more than k , where k is fixed and not a part of input, can be solved in time O ( mn k ), where m is the size of P and n is the number of atoms in P . Thus, this problem is in the class P. However, algorithms with the running time given by a polynomial of order k are not satisfactory even for relatively small values of k .The key question then is whether significantly better algorithms (with the degree of the polynomial not dependent on k ) exist. To tackle it, we use the framework of fixed-parameter complexity. We establish the fixed-parameter complexity for several parameterized decision problems involving models, supported models, and stable models of logic programs. We also establish the fixed-parameter complexity for variants of these problems resulting from restricting attention to definite Horn programs and to purely negative programs. Most of the problems considered in the paper have high fixed-parameter complexity. Thus, it is unlikely that fixing bounds on models (supported models, stable models) will lead to fast algorithms to decide the existence of such models.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Logic in Computer Science, I.2.4, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, D.1.6, F.1.3, F.1.3;I.2.4;D.1.6, Logic in Computer Science (cs.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green