Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inertial Proximal Difference-of-Convex Algorithm with Convergent Bregman Plug-and-Play for Nonconvex Imaging

Authors: Chow, Tsz Ching; Huang, Chaoyan; Wu, Zhongming; Zeng, Tieyong; Aviles-Rivero, Angelica I.;

Inertial Proximal Difference-of-Convex Algorithm with Convergent Bregman Plug-and-Play for Nonconvex Imaging

Abstract

Imaging tasks are typically tackled using a structured optimization framework. This paper delves into a class of algorithms for difference-of-convex (DC) structured optimization, focusing on minimizing a DC function along with a possibly nonconvex function. Existing DC algorithm (DCA) versions often fail to effectively handle nonconvex functions or exhibit slow convergence rates. We propose a novel inertial proximal DC algorithm in Bregman geometry, named iBPDCA, designed to address nonconvex terms and enhance convergence speed through inertial techniques. We provide a detailed theoretical analysis, establishing both subsequential and global convergence of iBPDCA via the Kurdyka-Łojasiewicz property. Additionally, we introduce a Plug-and-Play variant, PnP-iBPDCA, which employs a deep neural network-based prior for greater flexibility and robustness while ensuring theoretical convergence. We also establish that the Gaussian gradient step denoiser used in our method is equivalent to evaluating the Bregman proximal operator for an implicitly weakly convex functional. We extensively validate our method on Rician noise and phase retrieval. We demonstrate that iBPDCA surpasses existing state-of-the-art methods.

Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green