
arXiv: 2408.11368
We give a simple algorithm for maintaining a n^{o(1)}-approximate spanner H of a graph G with n vertices as G receives edge updates by reduction to the dynamic All-Pairs Shortest Paths (APSP) problem. Given an initially empty graph G, our algorithm processes m insertions and n deletions in total time m^{1 + o(1)} and maintains an initially empty spanner H with total recourse n^{1 + o(1)}. When the number of insertions is much larger than the number of deletions, this notably yields recourse sub-linear in the total number of updates. Our simple algorithm can be extended to maintain a δ ≥ ω(1)-approximate spanner with n^{1+o(1)} edges throughout a sequence of m insertions and D deletions with amortized update time n^{o(1)} and total recourse n^{1 + o(1)} + n^{o(1)} ⋅ D via batching.
FOS: Computer and information sciences, Dynamic Greedy Spanner, Dynamic graph algorithms, Computer Science - Data Structures and Algorithms, Spanner, Data Structures and Algorithms (cs.DS), ddc: ddc:004
FOS: Computer and information sciences, Dynamic Greedy Spanner, Dynamic graph algorithms, Computer Science - Data Structures and Algorithms, Spanner, Data Structures and Algorithms (cs.DS), ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
