Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SSSIC: Semantics-to-Signal Scalable Image Coding With Learned Structural Representations

Authors: Ning Yan; Changsheng Gao; Dong Liu; Houqiang Li; Li Li; Feng Wu;

SSSIC: Semantics-to-Signal Scalable Image Coding With Learned Structural Representations

Abstract

We address the requirement of image coding for joint human-machine vision, i.e., the decoded image serves both human observation and machine analysis/understanding. Previously, human vision and machine vision have been extensively studied by image (signal) compression and (image) feature compression, respectively. Recently, for joint human-machine vision, several studies have been devoted to joint compression of images and features, but the correlation between images and features is still unclear. We identify the deep network as a powerful toolkit for generating structural image representations. From the perspective of information theory, the deep features of an image naturally form an entropy decreasing series: a scalable bitstream is achieved by compressing the features backward from a deeper layer to a shallower layer until culminating with the image signal. Moreover, we can obtain learned representations by training the deep network for a given semantic analysis task or multiple tasks and acquire deep features that are related to semantics. With the learned structural representations, we propose SSSIC, a framework to obtain an embedded bitstream that can be either partially decoded for semantic analysis or fully decoded for human vision. We implement an exemplar SSSIC scheme using coarse-to-fine image classification as the driven semantic analysis task. We also extend the scheme for object detection and instance segmentation tasks. The experimental results demonstrate the effectiveness of the proposed SSSIC framework and establish that the exemplar scheme achieves higher compression efficiency than separate compression of images and features.

Related Organizations
Keywords

Machine Learning, Humans, Neural Networks, Computer, Data Compression, Algorithms, Semantics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!