Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differentiable Projection-based Learn to Optimize in Wireless Network-Part I: Convex Constrained (Non-)Convex Programming

Authors: Wang, Xiucheng; Zhao, Xuan; Cheng, Nan;

Differentiable Projection-based Learn to Optimize in Wireless Network-Part I: Convex Constrained (Non-)Convex Programming

Abstract

This paper addresses a class of (non-)convex optimization problems subject to general convex constraints, which pose significant challenges for traditional methods due to their inherent non-convexity and diversity. Conventional convex optimization-based solvers often struggle to efficiently handle these problems in their most general form. While neural network (NN)-based approaches offer a promising alternative, ensuring the feasibility of NN-generated solutions and effectively training the NN remain key hurdles, largely because finite-capacity networks can produce infeasible outputs. To overcome these issues, we propose a projection-based method that projects any infeasible NN output onto the feasible domain, thus guaranteeing strict adherence to the constraints without compromising the NN's optimization capability. Furthermore, we derive the objective function values for both the raw NN outputs and their projected counterparts, along with the gradients of these values with respect to the NN parameters. This derivation enables label-free (unsupervised) training, reducing reliance on labeled data and improving scalability. Experimental results demonstrate that the proposed projection-based method consistently ensures feasibility.

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green