
arXiv: 2502.00053
This paper addresses a class of (non-)convex optimization problems subject to general convex constraints, which pose significant challenges for traditional methods due to their inherent non-convexity and diversity. Conventional convex optimization-based solvers often struggle to efficiently handle these problems in their most general form. While neural network (NN)-based approaches offer a promising alternative, ensuring the feasibility of NN-generated solutions and effectively training the NN remain key hurdles, largely because finite-capacity networks can produce infeasible outputs. To overcome these issues, we propose a projection-based method that projects any infeasible NN output onto the feasible domain, thus guaranteeing strict adherence to the constraints without compromising the NN's optimization capability. Furthermore, we derive the objective function values for both the raw NN outputs and their projected counterparts, along with the gradients of these values with respect to the NN parameters. This derivation enables label-free (unsupervised) training, reducing reliance on labeled data and improving scalability. Experimental results demonstrate that the proposed projection-based method consistently ensures feasibility.
FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
