Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-Rennes 1arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Article . 2024
Data sources: HAL-Rennes 1
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Scientometric Research
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AMBV: An Optimized Generic Viterbi Algorithm for Bayesian Networks

Authors: Greau Hamard, Pierre Samuel; Djoko-Kouam, Moïse; Louët, Yves;

AMBV: An Optimized Generic Viterbi Algorithm for Bayesian Networks

Abstract

Bayesian Networks is a family of machine learning models widely used in various applications such as speech recognition, Protocol Reverse Engineering, or more generally the retrieval of hidden information in data. These models, at the crossroads of probability theory and graph theory, allow intuitive modelling and simple interpretation of the results. In this paper, we are interested in inferring the most probable state of a discrete Bayesian network. In the case of a Hidden Markov Model, the Viterbi algorithm is usually used. However, although accurate, it is not optimized, and when generalized to any number of variables per time slice, its complexity increases exponentially. This is why we have developed an optimized version of the Viterbi algorithm, Automatic Markov Boundaries construction optimized Viterbi (AMBV), taking advantage of the fact that once a model is trained, it is usually used to analyze many observations. Moreover, in case of sparse probability distributions of the variables, an additional level of optimization is used. Finally, in order to make possible the inference of the most probable state of any discrete Bayesian network, a mechanism for automatically generating a set of Markov Boundaries for the network has been proposed. We will show that AMBV performs significantly better than the classical Viterbi algorithm as soon as the complexity of the network increases sufficiently.

Keywords

[MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Viterbi, Automatic Markov Boundaries, [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], Bayesian Networks, Optimized, Sparse probability distributions, [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS], Most probable network state, Generic, 004, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green