Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waste Management Bul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Waste Management Bulletin
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Waste Management Bulletin
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Conventional fuels from thermocatalytic pyrolysis of waste tube rubber using SiO2 as catalyst

Authors: Riaz Muhammad; Felizitas Schlederer; Ali Riaz;

Non-Conventional fuels from thermocatalytic pyrolysis of waste tube rubber using SiO2 as catalyst

Abstract

Large quantities of used rubber material, mostly from vehicle scrap tires and tube rubbers, are discarded every year, causing environmental problems of great concern and representing a tough challenge for waste management bodies around the world. Various ways to remediate the issues have been proposed and applied from time to time. Pyrolysis offers a promising solution to convert waste tires into potential fuels and chemicals. Thermo-catalytic pyrolysis is a well-established process that aims for material, energy or chemical product recovery. The demand and need for the use of materials like scrap tubes and rubbers for producing useful products is a valuable consideration for this kind of waste that in turn may minimize the dependency on natural resources. Inner tube rubber, which is mainly made of isobutylene-isoprene, poses a hazard to the environment. However, there is also an opportunity to turn this waste product into a valuable energy source. In the current study optimization of parameters such as temperature, time and catalyst weight for catalytic pyrolysis of isobutylene-isoprene rubber into liquid fuel in the presence of Silicon Dioxide (SiO2) as catalyst is reported. A maximum rubber conversion into oils was obtained at optimized conditions of 350 °C temperature, 1.5 g of catalyst (SiO2) for an hour heating time. The obtained pyrolyzed products were subjected to several physical and chemical tests. Reported results confirm the presence of 30 % of aliphatic hydrocarbons, 25 % polar hydrocarbons and 40 % aromatic hydrocarbons. The distillation data indicates that oil obtained is a mixture of aromatic and olefinic hydrocarbons as that of diesel and may be used as an alternative fuel.

Keywords

Standardization. Simplification. Waste, Waste rubber, HD62, Silicon Dioxide, Alternative fuel, Environmental technology. Sanitary engineering, Catalysis, Pyrolysis, TD1-1066

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold