Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of a physical-layer network coding system with iterative coding schemes

Authors: Alaa A. S. Al-Rubaie; C. C. Tsimenidis; M. Johnston; B. Sharif;

Comparison of a physical-layer network coding system with iterative coding schemes

Abstract

Physical layer network coding (PNC) is a novel technique that allows two users to exchange messages in a wireless network. PNC takes place at a relay node and exploits the interference caused by incoming signals from the two users to increase throughput. In this paper, the performance of a two-way relay network employing PNC is evaluated with three types of error-correcting codes used at the source and destination nodes, namely low-density parity-check codes, turbo codes and bit-interleaved coded modulation with iterative decoding (BICM-ID). All three coding schemes perform similarly in a single user system on the AWGN channel with no relay, but results obtained when employing PNC show that although there is an overall degradation in their performance of all three codes, the LDPC code performance is more seriously affected due to the Sum-Product decoding algorithm being less robust to unreliable symbols broadcast from the relay.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!