Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory

Authors: Mondal, Jagannath; Halverson, Duncan; Li, Isaac T S; Stirnemann, Guillaume; Walker, Gilbert C; Berne, Bruce J;

How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory

Abstract

SignificanceOsmolytes influence protein structure by either promoting (protecting osmolytes) or disrupting (denaturing osmolytes) the folding process. Current consensus is that protecting osmolytes [trimethylamine N-oxide (TMAO)] act by being excluded from the protein surface while denaturing osmolytes (urea) bind to it. However there is little knowledge about the molecular mechanism of osmolyte action on hydrophobic macromolecules, which form the core of most proteins. This work, through a combination of single-molecule atomic force microscopy experiments and computer simulations, investigates the collapse behavior of a hydrophobic polymer polystyrene in TMAO and urea. The mechanism of osmolyte action on hydrophobic macromolecules is distinct from that of a protein, but, despite key differences, both mechanisms comply with the standard thermodynamic theory of preferential osmolyte binding.

Keywords

Protein Folding, Polymers, Protein Conformation, Normal Distribution, [SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics, Molecular Dynamics Simulation, Stress, Microscopy, Atomic Force, Urea: chemistry, Polystyrenes: chemistry, Methylamines, Urea, Computer Simulation, Proteins: chemistry, Microscopy, Polymers: chemistry, Atomic Force, Proteins, Water, Water: chemistry, Mechanical, Methylamines: chemistry, Solvents: chemistry, Solvents, Polystyrenes, Thermodynamics, Stress, Mechanical, Hydrophobic and Hydrophilic Interactions, Software, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 1%
Top 10%
Top 1%
bronze