
In this paper, we present a comprehensive guide for implementing artificial intelligence (AI) techniques in traditional East Asian medicine (TEAM) research. We cover essential aspects of the AI model development pipeline, including research objective establishment, data collection and preprocessing, model selection, evaluation, and interpretation. The unique considerations in applying AI to TEAM datasets, such as data scarcity, imbalance, and model interpretability, are discussed. We provide practical tips and recommendations based on best practices and our own experience. The potential of large language models in TEAM research is also highlighted. Finally, we discuss the challenges and future directions of AI application in TEAM, emphasizing the need for standardized data collection and sharing platforms.
Artificial intelligence, Traditional Chinese medicine, Education Article, Machine learning, RZ409.7-999, Traditional East Asian medicine, Miscellaneous systems and treatments, Medical AI
Artificial intelligence, Traditional Chinese medicine, Education Article, Machine learning, RZ409.7-999, Traditional East Asian medicine, Miscellaneous systems and treatments, Medical AI
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
