Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Томского по...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ДИНАМИКА ГЕОМЕТРИЧЕСКИ И ФИЗИЧЕСКИ НЕЛИНЕЙНОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА НАНОЭЛЕКТРОМЕХАНИЧЕСКОГО ДАТЧИКА В ВИДЕ НЕОДНОРОДНОЙ НАНОБАЛКИ, НАХОДЯЩЕЙСЯ В ТЕМПЕРАТУРНОМ И ШУМОВОМ ПОЛЯХ

Authors: Krysko, Vadim Anatolyevich; Papkova, Irina Vladislavovna; Yakovleva, Tatyana Vladimirovna; Zakharova, Alena Alexandrovna; Zhigalov, Maxim Viktorovich; Krysko, Anton Vadimovich;

ДИНАМИКА ГЕОМЕТРИЧЕСКИ И ФИЗИЧЕСКИ НЕЛИНЕЙНОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА НАНОЭЛЕКТРОМЕХАНИЧЕСКОГО ДАТЧИКА В ВИДЕ НЕОДНОРОДНОЙ НАНОБАЛКИ, НАХОДЯЩЕЙСЯ В ТЕМПЕРАТУРНОМ И ШУМОВОМ ПОЛЯХ

Abstract

Актуальность исследования. Наноэлектромеханические системы,будучи высокочувствительными датчиками, имеющими малыеразмеры, и надежными в эксплуатации, находят все более широкое применение в нефтегазовой промышленности для мониторинга различных процессов в нефтедобыче – от разведки до повышения нефтеотдачи, а также при бурении скважин, очистке, фракционировании и переработке до вывода их из эксплуатации. Одним из примеров применения наноэлектромеханических систем является сейсмические исследование месторождений. Применениенаноэлектромеханических систем позволяет улучшить производительность в дополнение к существенной экономии средств и времени для широкого спектра технологий нефтегазовой промышленности. Благодаря возможности непрерывного контроля эти технологии могут стать основой «умных» месторождений. Цель: построение математической модели, наиболее полно описывающей нелинейную динамику чувствительного элемента наноэлектромеханического датчика под действием знакопеременной нагрузки. Для этогонеобходимо учесть наиболее распространённые в настоящее время кинематические гипотезы, масштабные эффекты с помощью моментной теории упругости,нелинейную зависимость между напряжениями и деформациями, неоднородность материала, шумовые и тепловые поля.А также исследовать характер сложных нелинейных колебаний и выявитьзакономерности перехода их от гармонических к хаотическим. Объекты: геометрически и физически нелинейная нанобалка, описываемая кинематической моделью первого приближения, на которую воздействует равномерно распределенная знакопеременная поперечная нагрузка с гармонической составляющей, температурное поле и аддитивный внешний шум. Методы: вариационные методы,метод конечных разностей второго порядка точности для сведения системы нелинейных дифференциальных уравнений в частных производных к задаче Коши, метод Ньюмарка для решения задачи Коши, метод переменных параметров упругости Биргерадля решения физически нелинейной задачи, метод вариационных итераций для получения аналитического решения двумерного уравнения теплопроводности. Результаты.Для получения аналитического решения теплопроводности применяется метод вариационных итераций. Построенаматематическая модельколебаний чувствительного элемента наноэлектромеханического датчика в виде размерно-зависимой балки, на которую действует равномерно распределенная поперечная нагрузка с гармонической составляющей. Помимо переменной нагрузки учитывалось влияние температурного поля и аддитивного внешнего шумового воздействия. Геометрическая нелинейность принята по теории Теодора фонКармана (связь между деформациями и перемещениями). Для учета физической нелинейностиматериалабалки применяются деформационная теория пластичности и метод переменных параметров упругости. Уравнения движения элемента механической системы, а также соответствующие граничные и начальные условия выведены исходя из принципа Остроградского–Гамильтона на базе модифицированной моментной теории с учетом гипотезы Эйлера–Бернулли.Выявлено,что температурное и шумовое поляуменьшают нагрузку, при которой происходит переход в хаотическое состояние системы. Переход от гармонических колебаний к хаотическим происходит по сценарию Рюэля–Такенса–Ньюхауза.

Keywords

акселерометры, нанобалка Эйлера-Бернулли, Euler-Bernoulli nanobeam, modified couple stress theory of elasticity, температурные поля, шумовые поля, измерения, чувствительные элементы, accelerometer for measuring borehole parameters, теория упругости, хаотические колебания, chaotic oscillations of a nanoelectromechanical system, параметры, метод конечных разностей, nanoelectromechanical system, temperature and noise fields, наноэлектромеханические системы, метод Ньюмарка, буровые скважины, датчики, finite difference and Newmark methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold