Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Magnetics
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonbinary LDPC Coding and Iterative Decoding System With 2-D Equalizer for TDMR R/W Channel Using Discrete Voronoi Model

Authors: Yasuaki Nakamura; Yoshihiro Okamoto; Hisashi Osawa; Hajime Aoi; Hiroaki Muraoka;

Nonbinary LDPC Coding and Iterative Decoding System With 2-D Equalizer for TDMR R/W Channel Using Discrete Voronoi Model

Abstract

A 2-D magnetic recording (TDMR) by shingled magnetic recording (SMR) is one of the most promising technologies for realizing ultra-high areal densities. We have developed the discretized granular medium model with nonmagnetic grain boundaries and the simple writing process considering intergranular exchange fields and magnetostatic interaction fields between grains on the discrete Voronoi model for TDMR. In this paper, the bit-error rate (BER) performance of the iterative decoding system using a nonbinary low-density parity-check (LDPC) code over Galois field GF(q) with the 2-D finite-impulse-response equalizer (2D-FIRE) is obtained via computer simulation using an R/W channel model employing the writing process under TDMR specifications of 4.12 Tb/in2, and it is compared to that with the 1-D FIRE (1D-FIRE). The results show that the BER performance of the nonbinary LDPC coding and iterative decoding system with the 2D-FIRE is better than that with the 1D-FIRE.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!