Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animal Models and Ex...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal Models and Experimental Medicine
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Qingyangshen glycosides on neuroplasticity in a mouse model of social defeat

Authors: Jingru Wang; Weishi Chen; Qiang Zhu; Yao Liu; Zheng Kang; Dingding Liu; Guirong Zeng;

Effects of Qingyangshen glycosides on neuroplasticity in a mouse model of social defeat

Abstract

AbstractBackgroundQingyangshen (Cynanchum otophyllum C.K. Schneid) is a folk drug for treating depression and other mental disorders induced by social defeat stress. Neuroplasticity in the hippocampus is essential for the modulation of cognition and emotion, and its impairment may contribute to the development and progression of depression. Our previous studies have found that Qingyangshen glycosides (QYS) can improve depression‐like behavior in social failure mouse models, mainly through PGC‐1α/FNDC5/BDNF signaling pathways activation, but its effects and mechanisms on hippocampal neuroplasticity remain unknown.MethodsChronic social defeat stress (CSDS) was used to induce social defeat in mice. Morphological changes in the hippocampus were observed by H&E staining and Golgi staining. Immunofluorescence double staining was used to detect the expression of synaptophysin (SYN) and postsynaptic density protein‐95 (PSD‐95), while western blot was employed to evaluate PSD‐95, SYN, and doublecortin (DCX) proteins. The pathological processing of social defeat and the therapeutic effects of QYS on it was confirmed through behavioral assessment associated with morphologic observation.ResultsDuring the whole study, the sucrose preference indices and OFT activity time of CSDS mice were significantly decreased (p ≤ 0.05), and the tail suspension immobility time was significantly increased (p ≤ 0.05), suggesting that the mice had significant depressive symptoms. Treatment with QYS (25, 50, and 100 mg/kg) significantly alleviated depressive symptoms in CSDS mice, which was demonstrated by significantly (p ≤ 0.05 or p ≤ 0.01) reducing the duration of tail‐hanging immobility and increasing the tendency of sucrose preference indices and OFT activity time. QYS treatment also significantly increased the expression of DCX, PSD‐95, and SYN proteins, which play a crucial role in depression.ConclusionsQYS alleviated these symptoms by enhancing hippocampal neuroplasticity through upregulating the expression of synapse‐associated proteins (SAPs). The therapeutic mechanism of QYS may involve modulating the neuroplasticity of hippocampus neurons by altering the expression of SAPs.

Related Organizations
Keywords

Themed Section: Frontiers in Neural Regeneration and Repair, Medicine (General), R5-920, DCX, neuroplasticity, PSD‐95, QYS glycosides, SYN, chronic social defeat

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold