
Machine translation tools have demonstrated substantial progress in enhancing translation accuracy since the emergence of artificial intelligence. However, challenges persist in reasoning (or the lack thereof), considering contexts, addressing specific word games, and interpreting very long or very short sentences—those exceeding 50 and falling below 7 words (Bowker, 2023 : 893). Additionally, accurately translating technical or specialized terms and their variations remains a hurdle. This research introduces a categorical mathematical formalization of the comprehension stages in translation, along with a model for calculating acceptances (specific meanings of words) during the verification of meaning hypotheses. The goal is to elucidate the comprehension process and integrate contextual considerations. The formalism delineates a series of fundamental cognitive operations involved in comprehension. Furthermore, it advocates for evaluating meaning hypotheses using logical modalities, particularly hypostases, described as phrases (groups of words)—a unit of discourse rather than language—signifying the structure of arguments conveying the speaker's knowledge. The strength of our proposed mathematical model lies in its independence from both source and target languages, as well as the subjectivity of text authors or translators. Additionally, the assessment of meaning hypotheses relies on verifiable logical modalities, ensuring a reliable, explicable, and controllable outcome.
Technology, T, Electronic computers. Computer science, QA75.5-76.95
Technology, T, Electronic computers. Computer science, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
