Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning

Authors: Dhananjay Saikumar; Blesson Varghese;

NeuroFlux: Memory-Efficient CNN Training Using Adaptive Local Learning

Abstract

Efficient on-device Convolutional Neural Network (CNN) training in resource-constrained mobile and edge environments is an open challenge. Backpropagation is the standard approach adopted, but it is GPU memory intensive due to its strong inter-layer dependencies that demand intermediate activations across the entire CNN model to be retained in GPU memory. This necessitates smaller batch sizes to make training possible within the available GPU memory budget, but in turn, results in substantially high and impractical training time. We introduce NeuroFlux, a novel CNN training system tailored for memory-constrained scenarios. We develop two novel opportunities: firstly, adaptive auxiliary networks that employ a variable number of filters to reduce GPU memory usage, and secondly, block-specific adaptive batch sizes, which not only cater to the GPU memory constraints but also accelerate the training process. NeuroFlux segments a CNN into blocks based on GPU memory usage and further attaches an auxiliary network to each layer in these blocks. This disrupts the typical layer dependencies under a new training paradigm - $\textit{`adaptive local learning'}$. Moreover, NeuroFlux adeptly caches intermediate activations, eliminating redundant forward passes over previously trained blocks, further accelerating the training process. The results are twofold when compared to Backpropagation: on various hardware platforms, NeuroFlux demonstrates training speed-ups of 2.3$\times$ to 6.1$\times$ under stringent GPU memory budgets, and NeuroFlux generates streamlined models that have 10.9$\times$ to 29.4$\times$ fewer parameters.

Comment: Accepted to EuroSys 2024

Related Organizations
Keywords

QA75, Computer Science - Machine Learning, QA75 Electronic computers. Computer science, Memory efficient training, Edge computing, NIS, CNN training, Local learning, 3rd-NDAS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities