Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.18653/v1/20...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MobiZO: Enabling Efficient LLM Fine-Tuning at the Edge via Inference Engines

Authors: Gao, Lei; Ziashahabi, Amir; Niu, Yue; Avestimehr, Salman; Annavaram, Murali;

MobiZO: Enabling Efficient LLM Fine-Tuning at the Edge via Inference Engines

Abstract

Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers. The next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data. Given the sensitive nature of such private data, it is desirable to fine-tune these models on edge devices to improve user trust. However, fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands, as well as limited infrastructure support. We observe that inference engines (e.g., ExecuTorch) can be repurposed for fine-tuning by leveraging zeroth-order (ZO) optimization, which uses multiple forward passes to approximate gradients. While promising, direct application of ZO methods on edge devices is inefficient due to the high computational cost of multiple forward passes required for accurate gradient estimation, and their deployment has been largely unexplored in practice. We introduce MobiZO, a resource-efficient fine-tuning framework for LLMs specifically designed for edge devices. MobiZO combines three key innovations: (1) a parallelized randomized gradient estimator that employs both outer-loop and inner-loop parallelism to eliminate sequential forward passes, (2) a specialized Multi-Perturbed LoRA (MP-LoRA) module that enables efficient realization of both inner and outer loop parallelism, and (3) a seamless integration with ExecuTorch for on-device training, requiring no modifications to the runtime. Experiments demonstrate that MobiZO achieves substantial runtime speedups and memory savings while improving fine-tuning accuracy, paving the way for practical deployment of LLMs in real-time, on-device applications.

Keywords

Machine Learning, FOS: Computer and information sciences, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green