Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Online Publikationen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.18419/op...
Master thesis . 2013
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative visualization of electrostatic fields

Authors: Scharnowski, Katrin;

Comparative visualization of electrostatic fields

Abstract

Im Kontext großer Mengen komplexer Daten, z.B. aus Molekulardynamik-Simulationen, können vergleichende Visualisierungstechniken wichtige Einblicke in die Zusammenhänge, Unterschiede und Gemeinsamkeiten verschiedener Datensätze geben. Zum Zweck einer vergleichenden Visu- alisierung des elektrostatischen Oberflächenpotentials von Molekülen wurde ein Framework zur Verknüpfung von Moleküloberflächen entwickelt. Hierbei wird zunächst aus den Partikel- datensätzen ein Dichtefeld zur impliziten Oberflächenrepresentation erstellt. Anschließend wird mit Hilfe des Marching Tetrahedra Algorithmus eine Triangulierung der Startoberfläche berechnet. Mit Hilfe einer Starrkörper-Abbildung und eines "Deformable Model"-Ansatzes wird eine Relation zwischen den beiden Flächen hergestellt. Die Startfläche wird dafür durch ein elastisches Modell representiert und wird lokal deformiert um sich der Zielfläche anzupassen. Das Modell wird mit Hilfe einer adaptiven externen Kraft und einer projezierten internen Kraft verformt. Basierend auf der dadurch hergestellten Relation wird neben einer vergleichenden Visualisierung auch eine Differenz-Metrik hergeleitet, die zur Quantifizierung der Potentialun- terschiede beider Flächen verwendet wird. Sowohl die Flächentriangulierung als auch die Deformation werden mit CUDA implementiert. Der entwickelte Ansatz wird schließlich auf Partikeldatensätze angewendet, die durch Molekulardynamik-Simulationen erstellt wurden.

When dealing with large amounts of complex data, such as the results of Molecular Dynamics simulations, comparative visualization techniques are a useful tool to demonstrate connections, differences, or similarities of different data sets. In order to facilitate comparative visualization of the molecular electrostatic surface potential, a shape correspondence framework for molecular surfaces is derived. Given two particle-based input data sets, an implicit molecular surface representation is defined by a Gaussian density volume. A triangulation is extracted from the volume using the Marching Tetrahedra method. A mapping relation between the two molecular surfaces is then established using a deformable model approach in combination with rigid alignment. To this end, the source surface is represented by an elastic shape that is locally deformed to match the target surface. The deformation of the model is driven by an adaptive external force and by an internal force that is tangential to the Gaussian volume. Based on the mapping relation, both a comparative visualization and a difference metric are developed. The surface generation and the surface mapping approach are implemented in a highly parallel manner using CUDA. The method is finally applied to several real-world data sets obtained by Molecular Dynamics simulations.

Related Organizations
Keywords

Computer Graphics Applications (CR I.3.8), Three-Dimensional Graphics and Realism (CR I.3.7), Image Processing and Computer Vision Scene Analysis (CR I.4.8), 541, Computational Geometry and Object Modeling (CR I.3.5), 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green