Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.ntu.edu.s...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.32657/10356...
Doctoral thesis . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Game theory based algorithms for community detection

Authors: Radhika Arava;

Game theory based algorithms for community detection

Abstract

The problem of community detection is important as it helps in understanding the spread of information in a social network. Linkages are more likely to form between similar people, leading to the formation of some community structure which characterizes the network dynamic. The more friends the two people have in common, the more the influence that each person can exercise on the other. We assume that communities capture homophily as people of the same community share a lot of similar features and hence the people of the same community are likely to follow the same trend. We use the concept of weighted potential games to formulate the model and the community detection algorithms. We propose a disjoint community detection algorithm, NashDisjoint that detects disjoint communities in any given network, which works as good as the state of the art algorithms on LFR Benchmarks for the mixing factors less than 0.6. We propose an overlapping community detection algorithm NashOverlap to detect the overlapping communities in any given network. We evaluate the algorithm NashOverlap against the state of the art algorithms so far and we find that our algorithm works far better than the state of the art on the standard LFR benchmarks in around 152 different scenarios, generated by varying the number of vertices, community size, mixing factor and overlapping membership with respect to the Normalized Mutual Information measure. We identify and study the significant collaboration groups of DBLP datasets using our algorithm NashOverlap. We compare our results with that of the algorithm COPRA and find that our algorithm can give more and better insights into the dataset. DOCTOR OF PHILOSOPHY (SPMS)

Related Organizations
Keywords

:Science::Mathematics::Discrete mathematics::Algorithms [DRNTU]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze