
The matrix completion problem is to recover the matrix from its partially known samples. A recent convex relaxation of the rank minimization problem minimizes the nuclear norm instead of the rank of the matrix. In this paper, we use a smooth function—Hyperbolic Tangent function to approximate the rank function, and then using gradient projection method to minimize it. Our algorithm is named as Hyperbolic Tangent function Approximation algorithm (HTA). We report numerical results for solving randomly generated matrix completion problems and image reconstruction. The numerical results suggest that significant improvement be achieved by our algorithm when compared to the previous ones. Numerical results show that accuracy of HTA is higher than that of SVT and FPC, and the requisite number of sampling to recover a matrix is typically reduced. Meanwhile we can see the power of HTA algorithm for missing data estimate in images.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
