Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forecasting Mortality Rates: A Linear Mixed-Effects Model

Authors: Dastranj, Reza; Kolar, Martin;

Forecasting Mortality Rates: A Linear Mixed-Effects Model

Abstract

A linear mixed-effects (LME) model is proposed for modelling and forecasting single and multi-population age-specific death rates (ASDRs). The innovative approach that we take in this study treats age, the interaction between gender and age, their interactions with predictors, and cohort as fixed effects. Furthermore, we incorporate additional random effects to account for variations in the intercept, predictor coefficients, and cohort effects among different age groups of females and males across various countries. In the single-population case, we will see how the random effects of intercept and slope change over different age groups. We will show that the LME model is identifiable. Using simulating parameter uncertainty in the LME model, we will calculate 95% uncertainty intervals for death rate forecasts. We will use data from the Human Mortality Database (HMD) to illustrate the procedure. We assess the predictive performance of the LME model in comparison to the Lee-Carter (LC) models fitted to individual populations. Additionally, we evaluate the predictive accuracy of the LME model relative to the Li-Lee (LL) model. Our results indicate that the LME model provides a more precise representation of observed mortality rates within the HMD, demonstrates robustness in calibration rate selection, and exhibits superior performance when contrasted with the LC and LL models.

Related Organizations
Keywords

FOS: Computer and information sciences, Applications, Applications (stat.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities