Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Computing
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Buffer Overflow Management in QoS Switches

Buffer overflow management in QoS switches
Authors: Kesselman, Alexander; Lotker, Zvi; Mansour, Yishay; Patt-Shamir, Boaz; Schieber, Baruch; Sviridenko, Maxim;

Buffer Overflow Management in QoS Switches

Abstract

Summary: We consider two types of buffering policies that are used in network switches supporting Quality of Service (QoS). In the FIFO type, packets must be transmitted in the order in which they arrive; the constraint in this case is the limited buffer space. In the bounded-delay type, each packet has a maximum delay time by which it must be transmitted, or otherwise it is lost. We study the case of overloads resulting in packet loss. In our model, each packet has an intrinsic value, and the goal is to maximize the total value of transmitted packets. Our main contribution is a thorough investigation of some natural greedy algorithms in various models. For the FIFO model we prove tight bounds on the competitive ratio of the greedy algorithm that discards packets with the lowest value when an overflow occurs. We also prove that the greedy algorithm that drops the earliest packets among all low-value packets is the best greedy algorithm. This algorithm can be as much as 1.5 times better than the tail-drop greedy policy, which drops the latest lowest-value packets. In the bounded-delay model we show that the competitive ratio of any on-line algorithm for a uniform bounded-delay buffer is bounded away from 1, independent of the delay size. We analyze the greedy algorithm in the general case and in three special cases: delay bound 2, link bandwidth 1, and only two possible packet values. Finally, we consider the off-line scenario. We give efficient optimal algorithms and study the relation between the bounded-delay and FIFO models in this case.

Related Organizations
Keywords

deadline scheduling, buffer overflows, Deterministic scheduling theory in operations research, Analysis of algorithms and problem complexity, Quality of Service, competitive analysis, FIFO scheduling, Performance evaluation, queueing, and scheduling in the context of computer systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 10%
Top 1%
Top 10%
bronze