Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computers
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application-Guided Power-Efficient Fault Tolerance for H.264 Context Adaptive Variable Length Coding

Authors: Shafique, M.; Rehman, S.; Kriebel, F.; Khan, M. U. K.; Zatt, B.; Subramaniyan, A.; Vizzotto, B. B.; +1 Authors

Application-Guided Power-Efficient Fault Tolerance for H.264 Context Adaptive Variable Length Coding

Abstract

This paper presents a fault-tolerance technique for H.264's Context-Adaptive Variable Length Coding (CAVLC) on unreliable computing hardware. The application-specific knowledge is leveraged at both algorithm and architecture levels to protect the CAVLC process (especially context adaptation and coding tables) in a reliable yet power-efficient manner. Specifically, the statistical analysis of coding syntax and video content properties are exploited for: (1) selective redundancy of coefficient/header data of video bitstreams; (2) partitioning the coding tables into various sub-tables to reduce the power overhead of fault tolerance; and (3) run-time power management of memory parts storing the sub-tables and their parity computations. Experimental results demonstrate that leveraging application-specific knowledge reduces area and performance overhead by 2x compared to a double-parity table protection technique. For functional verification and area comparison, the complete H.264 CAVLC architecture is prototyped on a Xilinx Virtex-5 FPGA (though not limited to it).

Keywords

ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!