
arXiv: 2211.11753
Abstract Annotating the dataset with high-quality labels is crucial for deep networks’ performance, but in real-world scenarios, the labels are often contaminated by noise. To address this, some methods were recently proposed to automatically split clean and noisy labels among training data, and learn a semi-supervised learner in a Learning with Noisy Labels (LNL) framework. However, they leverage a handcrafted module for clean-noisy label splitting, which induces a confirmation bias in the semi-supervised learning phase and limits the performance. In this paper, for the first time, we present a learnable module for clean-noisy label splitting, dubbed SplitNet, and a novel LNL framework which complementarily trains the SplitNet and main network for the LNL task. We also propose to use a dynamic threshold based on split confidence by SplitNet to optimize the semi-supervised learner better. To enhance SplitNet training, we further present a risk hedging method. Our proposed method performs at a state-of-the-art level, especially in high noise ratio settings on various LNL benchmarks.
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
