Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference

Authors: Hernán Darío, Vargas Cardona; Álvaro Ángel, Orozco; Mauricio A, Álvarez;

Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference

Abstract

Automatic identification of biosignals is one of the more studied fields in biomedical engineering. In this paper, we present an approach for the unsupervised recognition of biomedical signals: Microelectrode Recordings (MER) and Electrocardiography signals (ECG). The unsupervised learning is based in classic and bayesian estimation theory. We employ gaussian mixtures models with two estimation methods. The first is derived from the frequentist estimation theory, known as Expectation-Maximization (EM) algorithm. The second is obtained from bayesian probabilistic estimation and it is called variational inference. In this framework, both methods are used for parameters estimation of Gaussian mixtures. The mixtures models are used for unsupervised pattern classification, through the responsibility matrix. The algorithms are applied in two real databases acquired in Parkinson's disease surgeries and electrocardiograms. The results show an accuracy over 85% in MER and 90% in ECG for identification of two classes. These results are statistically equal or even better than parametric (Naive Bayes) and nonparametric classifiers (K-nearest neighbor).

Related Organizations
Keywords

Models, Statistical, Normal Distribution, Bayes Theorem, Electrocardiography, ROC Curve, Artificial Intelligence, Heart Conduction System, Cluster Analysis, Humans, Computer Simulation, Microelectrodes, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!