Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/focs46...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sublinear-Time Algorithms for Computing & Embedding Gap Edit Distance

Authors: Tomasz Kociumaka; Barna Saha;

Sublinear-Time Algorithms for Computing & Embedding Gap Edit Distance

Abstract

In this paper, we design new sublinear-time algorithms for solving the gap edit distance problem and for embedding edit distance to Hamming distance. For the gap edit distance problem, we give an $\tilde{O}(\frac{n}{k}+k^2)$-time greedy algorithm that distinguishes between length-$n$ input strings with edit distance at most $k$ and those with edit distance exceeding $(3k+5)k$. This is an improvement and a simplification upon the result of Goldenberg, Krauthgamer, and Saha [FOCS 2019], where the $k$ vs $��(k^2)$ gap edit distance problem is solved in $\tilde{O}(\frac{n}{k}+k^3)$ time. We further generalize our result to solve the $k$ vs $k'$ gap edit distance problem in time $\tilde{O}(\frac{nk}{k'}+k^2+ \frac{k^2}{k'}\sqrt{nk})$, strictly improving upon the previously known bound $\tilde{O}(\frac{nk}{k'}+k^3)$. Finally, we show that if the input strings do not have long highly periodic substrings, then already the $k$ vs $(1+��)k$ gap edit distance problem can be solved in sublinear time. Specifically, if the strings contain no substring of length $\ell$ with period at most $2k$, then the running time we achieve is $\tilde{O}(\frac{n}{��^2 k}+k^2\ell)$. We further give the first sublinear-time probabilistic embedding of edit distance to Hamming distance. For any parameter $p$, our $\tilde{O}(\frac{n}{p})$-time procedure yields an embedding with distortion $O(kp)$, where $k$ is the edit distance of the original strings. Specifically, the Hamming distance of the resultant strings is between $\frac{k-p+1}{p+1}$ and $O(k^2)$ with good probability. This generalizes the linear-time embedding of Chakraborty, Goldenberg, and Kouck�� [STOC 2016], where the resultant Hamming distance is between $\frac k2$ and $O(k^2)$. Our algorithm is based on a random walk over samples, which we believe will find other applications in sublinear-time algorithms.

Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green