
The factoring natural numbers into factors is a complex computational task. The complexity of solving this problem lies at the heart of RSA security, one of the most famous cryptographic methods. The classical trial division algorithm divides a given number N into all divisors, starting from 2 and to integer part of √N. Therefore, this algorithm can be called the direct trial division algorithm. We present the inverse trial division algorithm, which divides a given number N into all divisors,starting from the integer part of √N to 2.
trial division, prime numbers, QA1-939, Fermats factorization algorithm, Mathematics
trial division, prime numbers, QA1-939, Fermats factorization algorithm, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
