
pmid: 37022391
For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialized through a value function constructed by a feasible control law. It is proven that the iterative value function is nonincreasing and converges to the solution of the Bellman equation with constrained cost. The feasibility of the iterative control law is proven. The method to find the initial feasible control law is given. Implementation using neural networks (NNs) is introduced, and the convergence is proven by considering the approximation error. Finally, the property of the present VICC method is shown by two simulation examples.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
