Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Antimicro...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Antimicrobial Chemotherapy
Article . 2022 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2023
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HIV-1 resistance genotyping by ultra-deep sequencing and 6-month virological response to first-line treatment

Authors: Ghosn, Jade; Bachelet, Delphine; Livrozet, Marine; Cervantes-Gonzalez, Minerva; Poissy, Julien; Goehringer, François; Gandonniere, Charlotte Salmon; +19 Authors

HIV-1 resistance genotyping by ultra-deep sequencing and 6-month virological response to first-line treatment

Abstract

Abstract Objectives To evaluate the routine use of the Sentosa ultra-deep sequencing (UDS) system for HIV-1 polymerase resistance genotyping in treatment-naïve individuals and to analyse the virological response (VR) to first-line antiretroviral treatment. Methods HIV drug resistance was determined on 237 consecutive samples from treatment-naïve individuals using the Sentosa UDS platform with two mutation detection thresholds (3% and 20%). VR was defined as a plasma HIV-1 virus load <50 copies/mL after 6 months of treatment. Results Resistance to at least one antiretroviral drug with a mutation threshold of 3% was identified in 29% and 16% of samples according to ANRS and Stanford algorithms, respectively. The ANRS algorithm also revealed reduced susceptibility to at least one protease inhibitor (PI) in 14.3% of samples, to one reverse transcriptase inhibitor in 12.7%, and to one integrase inhibitor (INSTI) in 5.1%. For a mutation threshold of 20%, resistance was identified in 24% and 13% of samples according to ANRS and Stanford algorithms, respectively. The 6 months VR was 87% and was similar in the 58% of patients given INSTI-based treatment, in the 16% given PI-based treatment and in the 9% given NNRTI-based treatment. Multivariate analysis indicated that the VR was correlated with the baseline HIV virus load and resistance to at least one PI at both 3% and 20% mutation detection thresholds (ANRS algorithm). Conclusions The Vela UDS platform is appropriate for determining antiretroviral resistance in patients on a first-line antiretroviral treatment. Further studies are needed on the use of UDS for therapeutic management.

Country
France
Keywords

Emerging infectious diseases, [SDV.IMM] Life Sciences [q-bio]/Immunology, Genotype, Anti-HIV Agents, 610, HIV Infections, MESH: Hospitalization, MESH: Aftercare, Moderate to severe COVID-19, 616, Drug Resistance, Viral, HIV Seropositivity, MESH: COVID-19, Humans, MESH: SARS-CoV-2, HIV Integrase Inhibitors, Post-acute COVID-19 symptoms, MESH: Prevalence, MESH: Humans, MESH: Middle Aged, SARS-CoV-2, MESH: Patient Discharge, Cohort, MESH: Quality of Life, High-Throughput Nucleotide Sequencing, Viral Load, MESH: Male, MESH: Prospective Studies, Anti-Retroviral Agents, Mutation, HIV-1, [SDV.IMM]Life Sciences [q-bio]/Immunology, MESH: Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!