
pmid: 30441502
Content-based image retrieval (CBIR) is a technology designed to retrieve images from a database based on visual features. While the CBIR is highly desired, it has not been applied to clinical neuroradiology, because clinically relevant neuroradiological features are swamped by a huge number of noisy and unrelated voxel information. Thus, effective dimension reduction is the key to successful CBIR. We propose a novel dimensional compression method based on 3D convolutional autoencoders (3D-CAE), which was applied to the ADNI2 3D brain MRI dataset. Our method succeeded in compressing 5 million voxel information to only 150 dimensions, while preserving clinically relevant neuroradiological features. The RMSE per voxel was as low as 8.4%, suggesting a promise of our method toward the application to the CBIR.
Databases, Factual, Brain, Magnetic Resonance Imaging
Databases, Factual, Brain, Magnetic Resonance Imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
